`int (2x^2+7x-3)/(x-2)dx`
To solve, divide the numerator by the denominator (see attached figure).
`= int (2x + 11 + 19/(x-2)) dx`
Express it as sum of three integrals.
`= int 2xdx + int11dx + int 19/(x-2)dx`
For the first integral, apply the formula `int x^ndx = x^(n+1)/(n+1)+C` .
For the second integral, apply the formula `int adx = ax + C` .
`= (2x^2)/2 + 11x + C + int 19/(x-2)dx`
`=x^2+11x+C + int 19/(x-2)dx`
...
`int (2x^2+7x-3)/(x-2)dx`
To solve, divide the numerator by the denominator (see attached figure).
`= int (2x + 11 + 19/(x-2)) dx`
Express it as sum of three integrals.
`= int 2xdx + int11dx + int 19/(x-2)dx`
For the first integral, apply the formula `int x^ndx = x^(n+1)/(n+1)+C` .
For the second integral, apply the formula `int adx = ax + C` .
`= (2x^2)/2 + 11x + C + int 19/(x-2)dx`
`=x^2+11x+C + int 19/(x-2)dx`
For the third integral, use u-substitution method.
Let,
`u = x - 2`
Differentiate u.
`du = dx`
Then, plug-in them to the third integral.
`=x^2+11x+C+19int 1/(x-2)dx`
`=x^2+11x+C+19int 1/udu`
To take the integral of it, apply the formula `int 1/xdx =ln|x| +C` .
`= x^2+11x + 19ln|u| + C`
And substitute back `u = x-2` .
`=x^2+11x+19ln|x-2|+C`
Therefore, `int (2x^2+7x-3)/(x-2)dx = x^2+11x + 19ln|x-2| + C` .
No comments:
Post a Comment